Designing a seamless P1/P2a open enrollment CRM dose escalation study

ADMTP Conference, 26 February 2025

Elias Laurin Meyer

Trial Background

- Fictitious, but using learnings from actual trials BC has designed
- First-in-human study of novel compound
- Animal data and first PK/PD data exist
- Preparing for IND submission
- Not a small Biotech not interested in only P1 PoC
- Keeping in mind Project Optimus and learning not only about MTD but also about optimal dose as soon as possible and seamlessly
- Ideally skip P2 altogether and at the end of this P1/P2a go to a seamless P2/P3

General Design Requirements

- Have at most three trial participants simultaneously in DLT period at new dose levels or MTD estimate (coming from 3+3)
- If models permits, ready to escalate after 3 completers
- Starting dose 100mg, available doses 100mg 350mg in 25mg steps
 - Aim is to identify "correct" dose +-25mg
- Maximum sample size to determine MTD of 60 (phase 1)
 - Another (up to) 50 trial participants available to determine dose-response (phase 2a)
 - Optional cohort expansion after that
- DLT observation period 14 days
- TTL of 25%
- Minimally effective dose (MED) a priori assumed to be around 175mg

Basics of Continual Reassessment Method¹

- Model based dose escalation method (as opposed to rule based dose escalation method)
- Uses all available data to estimate dose-toxicity relationship
- Different parametric models possible (hyperbolic tangent, one/two parameter logistic regression, ...)
- Arriving trial participants assigned to current estimate of MTD

¹O'Quigley, John, and Larry Z. Shen. "Continual reassessment method: a likelihood approach." Biometrics (1996).

Statistical Model

- Example: Two parameter Bayesian logistic regression model
- Start with reasonably uninformative prior
- Parameters re-estimated after every patient with complete DLT information
- As MTD we choose the highest dose for which P(DLT) is "close" to the target toxicity rate (different definitions)
- Can be extended in many ways
- EWOC Escalation With Overdose Control
 - Exclude doses from allocation that have too high probability of "unacceptable" toxicity
 - Can become stricter as trial progresses

Various possible adaptations of CRM²

- Ad-hoc rules:
 - Don't skip dose levels in escalation / Skip at most X (1) dose levels
 - Start at the lowest dose
- Open enrollment
- Backfilling/Frontfilling
- Early stopping rules
- Target toxicity intervals
- Escalation with overdose control (EWOC)
- Switch between MTD/MED hunt if new emerging data suggests necessity

² Neuenschwander, Beat, Michael Branson, and Thomas Gsponer. "Critical aspects of the Bayesian approach to phase I cancer trials." Statistics in medicine 27.13 (2008).

Open enrollment³

- Cohort enrollment: fixed number of trial participants per dose, trial is paused until results available
- Open enrollment: Trial participants may be enrolled while the current "cohort" is completing
 - Requires additional rules and risk management, but can offer many advantages

³ Broglio, Kristine R., et al. "Bayesian dose escalation in oncology with sharing of information between patient populations." Contemporary clinical trials 44 (2015).

Rules for open enrollment

- Three queue concepts govern how many trial participants without DLT results can be allocated at a given dose:
 - Uncleared doses
 - Cleared doses below MTD
 - Cleared doses at MTD
- Concept of clearing doses is separate from queue lengths
 - Typically requiring a certain number of completers, but possibly also certain maximum toxicity rate

o	pen Enrollment	
Ĭ	Max subjects:	60
	Time unit:	week
	Mean recruitment rate (1/week):	2
	Time until final result (week):	2
	Maximum subjects without final results if dose is uncleared:	3
	Max subjects without final results if dose is cleared and below MTD:	6
	Max subjects without final results if dose is cleared and at MTD:	3

22 Lost A Model MT Dose 11-Dose 10-Dose 9 -Dose 8 Dose 7 Dose 6 Dose 5 Δ Dose 4 Dose 3 Dose 2 Dose 1 Accord - 22 20.8 10.4 31.2 41.6 52 Interim

Backfilling

 When the highest dose is unavailable for assignment (according to open enrollment queues), patients are either not assigned, or assigned to lower doses (backfilling)

Berry Consultants

• Several backfilling rules can be specified:

Frontfilling

- Backfilling to front dose (assign more patients to current escalation dose despite open enrollment queue)
- Behaves similarly to backfill:

Early stopping rules

- In general, maximum sample size is 60
- If there are 9 DLT completers on the (model estimated) MTD or ±25mg, stop the trial
- Stop only if probability of being near (±25mg) true MTD greater than threshold (here 60%)
- Many other rules possible
- Similar rules for MED search can switch between MED search and MTD search
- In practice, the DMC/SRC or sponsor may overrule and continue assignment of patients

Definition of "near" Target/MTD	
Count as MTD doses differing from MTD by less than or equal to:	25
Rules for ending MTD phase early	
Required number of subjects near MTD:	9
Minimum subjects accrued:	6
Range of dose strengths within the credible interval is less than or equal to:	1
Alpha for width of credible interval:	0.05
Stop if adding another DLT free cohort does no	alter the MTD
Size of additional cohort:	3
Probability of dose being near MTD greater than:	0.6
Maximum subjects near MTD:	2
Rules if all doses appear too toxic	
Minimum toxicities required before stopping:	2
Stop MTD phase and start MED phase when	
Maximum subjects used to determine MTD:	60

Individual Simulations (P1 part)

(Some) Things to look out for

• Is the CRM allocating, estimating and stopping "sensibly":

- Suggesting escalation after 3/3 DLTs? Suggesting not to escalate after 0/6 DLTs? *Might have to tweak prior or include pseudo subjects or look at EWOC rules.*
- Assigning patients 31-60 to the same dose with no change in estimated MTD? *Might have to tweak stopping rules.*
- Fast recruitment and either many lost subjects or too many backfilled subjects? *Might have to tweak backfill rules*.
- Assigning too many patients to previously untested doses? Might have to tweak open enrollment queue lengths.
- Jumping back and forth between 225mg and 250mg for too long? Might have to tweak stopping rules and consider ±25mg as "near"

Selected MTD - 3+3 vs. CRM P1

Sample Size / Percentage of correct pick	3+3	CRM	Correct Pick
All Toxic	5 / 80%	5/91%	No Dose
All Safe	34 / 87%	29 / 100%	Highest Dose
MTD225 - Steep	23 / 93% / <mark>8% (250mg)</mark>	24 / 99% / <mark>5% (250mg)</mark>	225mg +/- 25mg
MTD225 - Flat	20 / 47%	33 / 73%	225mg +/- 25mg

Selected MED - CRM P1/2a

MED: Sample Size / Percentage of correct pick	Pessimistic	Expected	Optimistic
All Toxic	<mark>6 / 33%</mark>	<mark>6 / 2%</mark>	<mark>6 / 58%</mark>
All Safe	45 / 99%	63 / 100%	60 / 98%
MTD225 - Steep	27 / 99%	63 / 95%	54 / 100%
MTD225 - Flat	38 / 99%	62 / 87%	69 / 97%
Truth	Pick None	Pick 175-225 mg	Pick 100-125mg

Selected "optimal dose"

• Optimal dose here defined as MED, if MED <= MTD, and None, otherwise

Sample Size / Percentage of correct pick / True Optimal Dose	Pessimistic	Expected	Optimistic
All Safe	45 / 99% / <mark>None</mark>	63 / 100% / <mark>175-225mg</mark>	60 / 98% / <mark>100-125mg</mark>
All Toxic	6 / 97% / <mark>None</mark>	6 / 97% / <mark>None</mark>	6 / 98% / <mark>None</mark>
Flat DT Curve	38 / 99% / <mark>None</mark>	62 / 93% / <mark>175-225mg</mark>	69 / 98% / <mark>100-125mg</mark>
Steep DT Curve	27 / 99% / <mark>None</mark>	63 / 100% / <mark>175-225mg</mark>	54 / 100% / <mark>100-125mg</mark>

What else could we explore?

- Is "correct" dose +-25mg too lenient?
- Tweak dose standardizations and prior to further improve OCs
- Consider small cohort run-in
- Consider expansion cohorts
- Investigate more scenarios of varying dose-toxicity relationships
- Investigate effect of recruitment rate and possibly tweak backfill
- Compare with other rule-based DE schemes such as BOIN, mTPI(2) and i3+3 (will be added to FACTS in 2025)
- Questions? Reach out to me at <u>elias@berryconsultants.com</u>

