Presented By: Nick Berry Senior Statistical Scientist Berry Consultants April 25, 2025

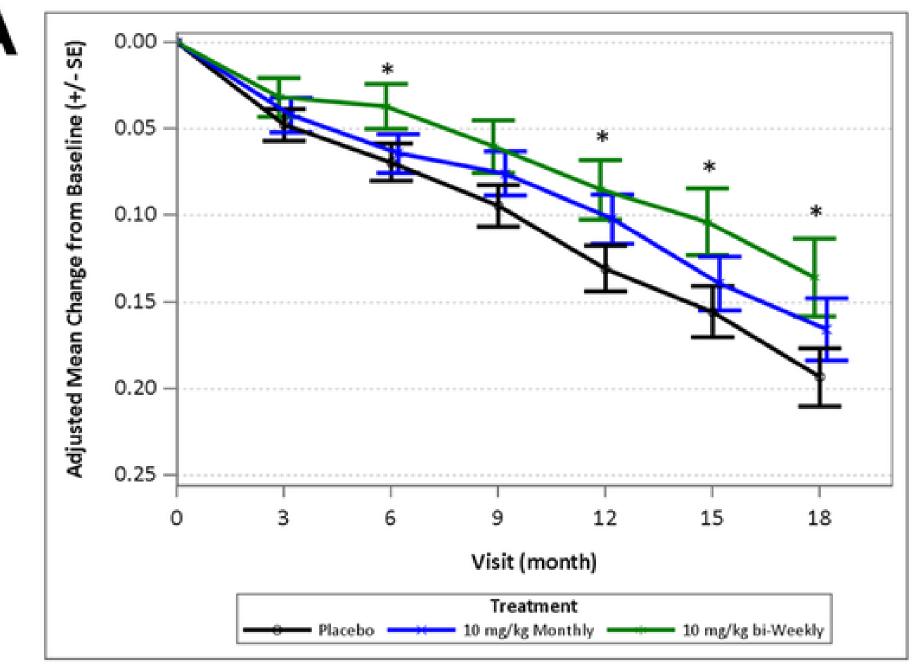
Let's Set Up an Example Trial:

- Indication: Early Onset Alzheimer's Disease
- Endpoint: Change from Baseline in ADCOMS at 52 weeks
 - Composite endpoint measuring cognitive impairment
 - Lower values of ADCOMS are good
 - 0 means no CFB, but we expect subjects to decline. Looking to minimize decline.
- **Treatments**: 5 different treatment arms
 - Cross (2.5, 5, 10)x(biweekly, monthly) and leave out 2.5 mg/kg monthly
- Expected Response: Expect control to worsen by about 0.1. Would love to have an active arm worsen by no more than 0.075. Call 0.025 clinically significant (CSD).
- Accrual Rate of 3 patients per month on average
- Adaptations: Want to detect clinically significant improvement in any dose.
 - Many interim analyses stop if Pr(CSD) > 0.95

Let's Set Up an Example Trial:

- Indication: Early Onset Alzheimer's Disease
- Endpoint: Change from Baseline in ADCOMS at 52 weeks
 - Composite endpoint measuring cognitive impairment
 - Lower values of ADCOMS are good
 - 0 means no CFB, but we expect subjects to decline. Looking to minimize decline.
- Treatments
 - Cross (2
- Expected active arm
- Adaptatio
 - Many inte

We're mimicking a lot of the Ban2401/lecanemab Phase 2 study design, but with some simplifications:


- Not using Response Adaptive Randomization \bullet
- Not using 2D NDLM to model dose response
- Leaving out some interim analyses
- Not calculating ED90 for dose selection ightarrow
- Some adaptive rules are different

ave an 5D).

Jump to FACTS to set up study

Endpoint Simulation Based on Reality

N (ADCOMS)	0 Months	3 Months	6 Months	9 Months	12 Months	15 Months	18 Months
Placebo	238	226	216	201	187	172	160
10 mg/kg monthly	246	235	208	177	165	152	146
10 mg/kg biweekly	152	143	130	105	93	89	79

From Ban2401/lecanemab Phase 2 study: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00813-8

5

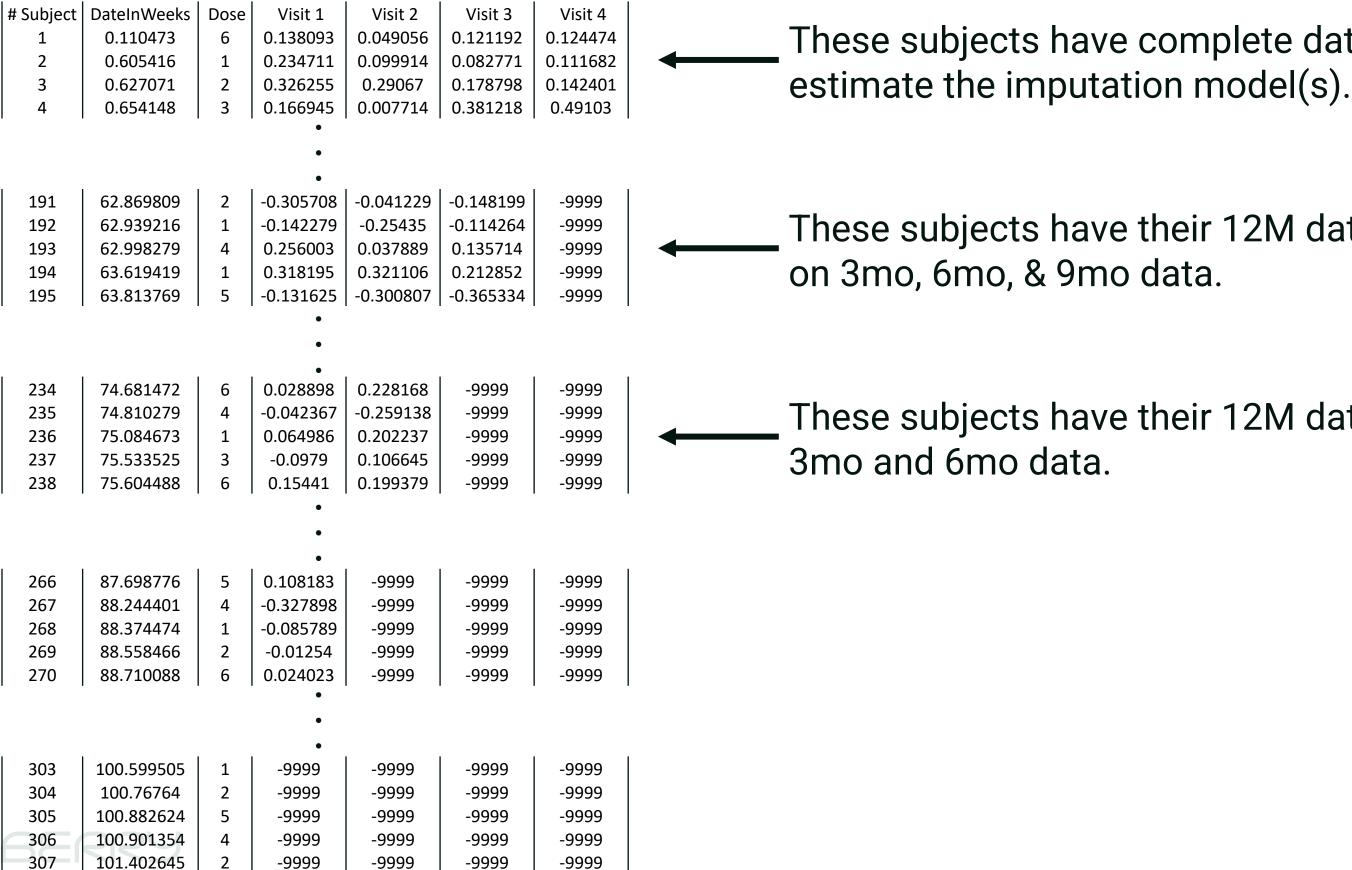
Notes about preliminary simulations:

• Only about 6 patients complete/arm at the first interim analysis (200 enrolled)

- 32-33 subjects complete/arm at the 4th interim analysis (350 enrolled)
- Standard error for estimate of the treatment mean is about: 0.18/sqrt(32.333) = 0.032

• There's an obvious improvement to be had here. We have 3, 6, and 9 months data – lets use it.

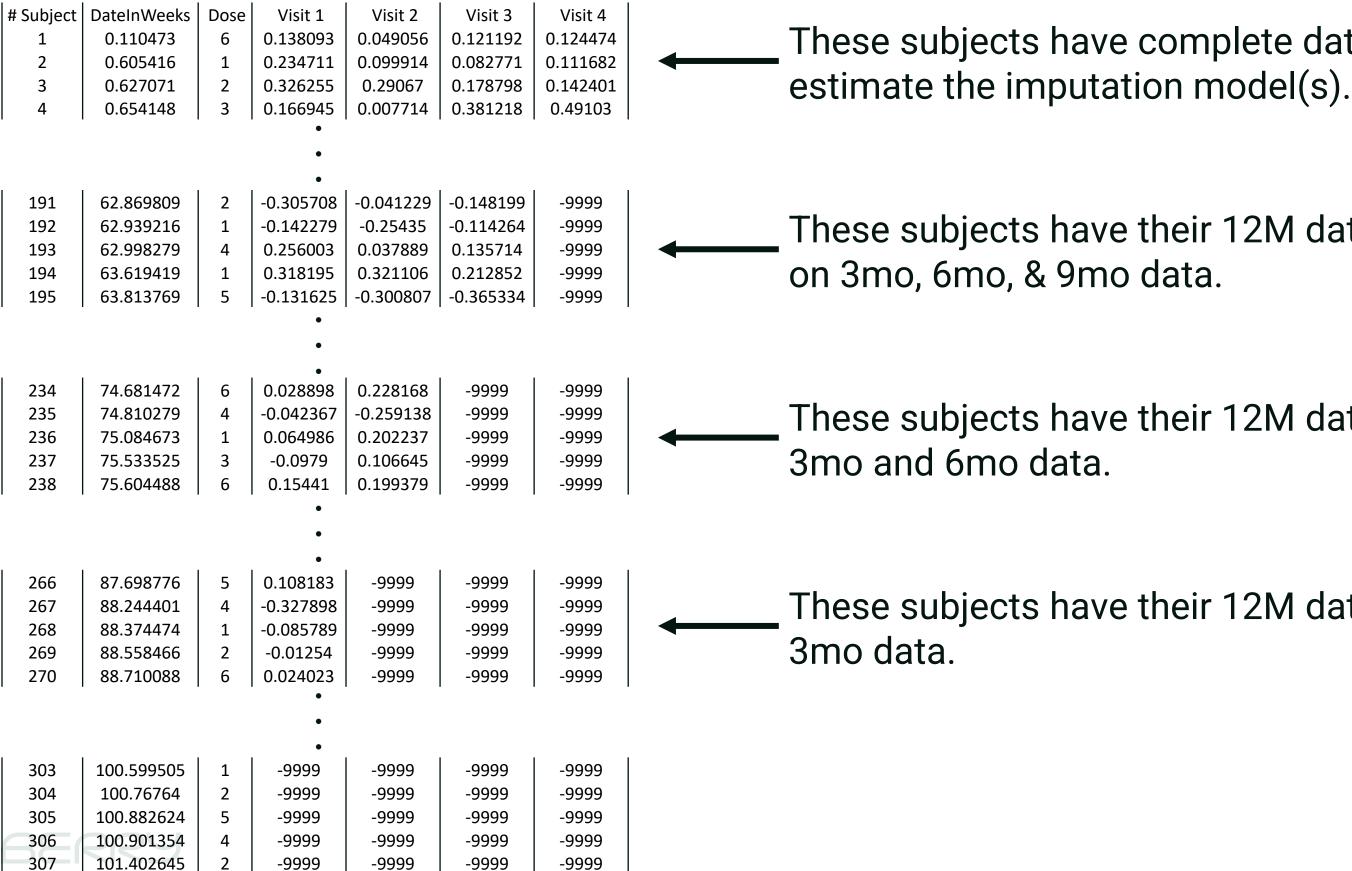
- What kind of longitudinal model are we using?
 - Longitudinal modeling in FACTS is done through multiple imputation.
 - Longitudinal models in FACTS are not MMRMs or disease progression joint models.
- The multiple imputation model works seamlessly with the Bayesian model
 - Longitudinal models are only available for the Bayesian model in FACTS
 - The result is an estimate of the final endpoint response that uses intermediate endpoint data
 - Completely meshes, and is co-estimated, with the specified dose response model
- Longitudinal models are always used to impute subjects who are in follow-up but do not have complete data.
 - They may or may not be used to impute subjects who drop out of study (user choice)
- Longitudinal models in FACTS improve estimation when there is missing data to be imputed. They do not change estimation if all subjects have complete data.


# Subject	DateInWeeks	Dose	Visit 1	Visit 2	Visit 3	Visit 4	
1	0.110473	6	0.138093	0.049056	0.121192	0.124474	
2	0.605416	1	0.234711	0.099914	0.082771	0.111682	
3	0.627071	2	0.326255	0.29067	0.178798	0.142401	
4	0.654148	3	0.166945	0.007714	0.381218	0.49103	
-	-	-	•	-	-		-
			•				
			•				
191	62.869809	2	-0.305708	-0.041229	-0.148199	-9999	
192	62.939216	1	-0.142279	-0.25435	-0.114264	-9999	
193	62.998279	4	0.256003	0.037889	0.135714	-9999	
194	63.619419	1	0.318195	0.321106	0.212852	-9999	
195	63.813769	5	-0.131625	-0.300807	-0.365334	-9999	
			٠				
			•				
I	I		•	I	I	I	ı
234	74.681472	6	0.028898	0.228168	-9999	-9999	
235	74.810279	4	-0.042367	-0.259138	-9999	-9999	
236	75.084673	1	0.064986	0.202237	-9999	-9999	
237	75.533525	3	-0.0979	0.106645	-9999	-9999	
238	75.604488	6	0.15441	0.199379	-9999	-9999	
			•				
			•				
I	I		•	1	I	1	
266	87.698776	5	0.108183	-9999	-9999	-9999	
267	88.244401	4	-0.327898	-9999	-9999	-9999	
268	88.374474	1	-0.085789	-9999	-9999	-9999	
269	88.558466	2	-0.01254	-9999	-9999	-9999	
270	88.710088	6	0.024023	-9999	-9999	-9999	
			•				
			•				
			•				I
303	100.599505	1	-9999	-9999	-9999	-9999	
304	100.76764	2	-9999	-9999	-9999	-9999	
305	100.882624	5	-9999	-9999	-9999	-9999	
306	100.901354	4	-9999	-9999	-9999	-9999	
307	101.402645	2	-9999	-9999	-9999	-9999	

These subjects have complete data. They are used to estimate the imputation model(s).

# Subject	DateInWeeks	Dose	Visit 1	Visit 2	Visit 3	Visit 4		
1	0.110473	6	0.138093	0.049056	0.121192	0.124474		Those subjects have a
2	0.605416	1	0.234711	0.099914	0.082771	0.111682		These subjects have c
3	0.627071	2	0.326255	0.29067	0.178798	0.142401	•	estimate the imputation
4	0.654148	3	0.166945	0.007714	0.381218	0.49103		estimate the imputation
			•					
			•					
			•					
191	62.869809	2	-0.305708	-0.041229	-0.148199	-9999		
192	62.939216	1	-0.142279	-0.25435	-0.114264	-9999		These subjects have the
193	62.998279	4	0.256003	0.037889	0.135714	-9999		
194	63.619419	1	0.318195	0.321106	0.212852	-9999		on 3mo, 6mo, & 9mo d
195	63.813769	5	-0.131625	-0.300807	-0.365334	-9999		
			٠					
			•					
			•	I	I	I		
234	74.681472	6	0.028898	0.228168	-9999	-9999		
235	74.810279	4	-0.042367	-0.259138	-9999	-9999		
236	75.084673	1	0.064986	0.202237	-9999	-9999		
237	75.533525	3	-0.0979	0.106645	-9999	-9999		
238	75.604488	6	0.15441	0.199379	-9999	-9999		
			•					
			•					
		1	•	I	I	I		
266	87.698776	5	0.108183	-9999	-9999	-9999		
267	88.244401	4	-0.327898	-9999	-9999	-9999		
268	88.374474	1	-0.085789	-9999	-9999	-9999		
269	88.558466	2	-0.01254	-9999	-9999	-9999		
270	88.710088	6	0.024023	-9999	-9999	-9999		
			•					
			•					
303	100.599505	1	-9999	-9999	-9999	-9999		
303 304	100.399303	1 2	-9999	-9999	-9999	-9999		
304 305	100.70704	5	-9999	-9999	-9999	-9999		
305	100.882024	4	-9999	-9999	-9999	-9999		
307	100.901334	2	-9999	-9999	-9999	-9999		
	101.702073	∠						

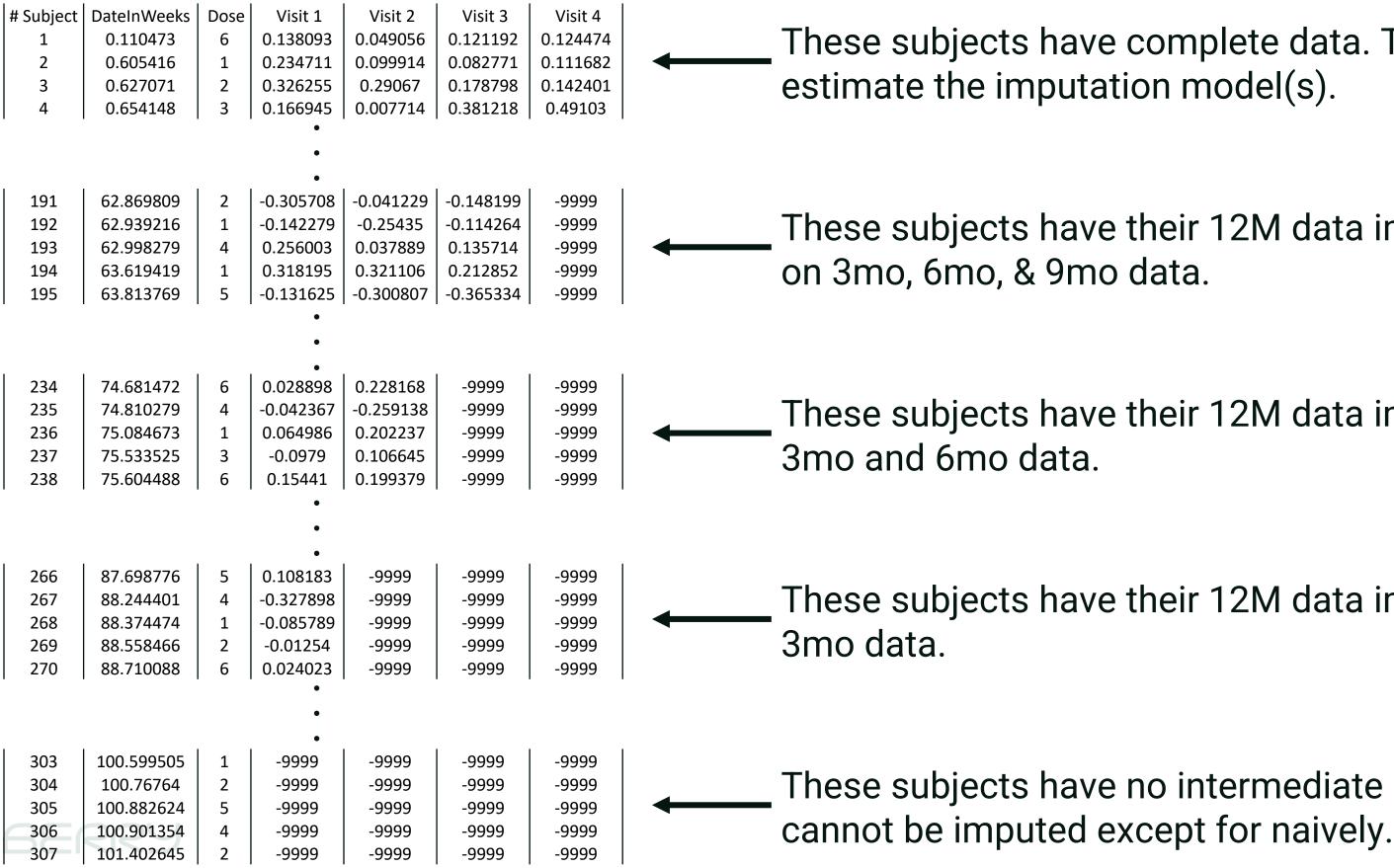
complete data. They are used to on model(s).


their 12M data imputed based data.

These subjects have complete data. They are used to

These subjects have their 12M data imputed based

These subjects have their 12M data imputed based on



These subjects have complete data. They are used to

These subjects have their 12M data imputed based

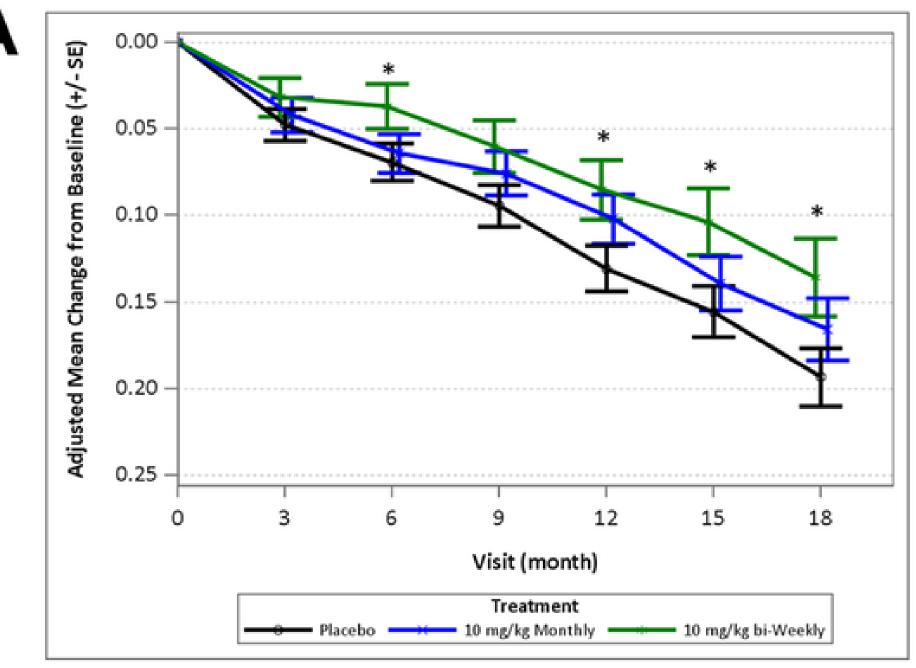
These subjects have their 12M data imputed based on

These subjects have their 12M data imputed based on

These subjects have complete data. They are used to

These subjects have their 12M data imputed based

These subjects have their 12M data imputed based on


These subjects have their 12M data imputed based on

These subjects have no intermediate data. They

Let's set this up in FACTS

Endpoint Simulation Based on Reality

N (ADCOMS)	0 Months	3 Months	6 Months	9 Months	12 Months	15 Months	18 Months
Placebo	238	226	216	201	187	172	160
10 mg/kg monthly	246	235	208	177	165	152	146
10 mg/kg biweekly	152	143	130	105	93	89	79

From Ban2401/lecanemab Phase 2 study: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00813-8

14

- Going back to the 4th interim analysis.
 - We still expect 194 subjects with complete data (>12 months of follow-up) on average
 - We also have an expectation of:
 - 39 subjects with between 9 and 12 months of follow-up
 - 39 subjects with between 6 and 9 months of follow-up
 - 39 subjects with between 3 and 6 months of follow-up
 - 39 subjects with less than 3 months of follow-up

These subjects give us information!

Model	SE of Estimate of Control (ESS [+LMgain])	SE of Estimate of 10 mg/kg biweekly dose (ESS [+LMgain])	Total Number Complete	Total ESS
No longitudinal data	0.0317	0.0317		
Using LM with no endpoint correlation	0.0310	0.0300		
Using LM with weak endpoint correlation	0.0295	0.0287		
Using LM with strong endpoint correlation	0.0271	0.0266		

ESS = Effective Sample Size

LMgain = Gain in ESS over the no longitudinal data model.

Model	SE of Estimate of Control (ESS [+LMgain])	SE of Estimate of 10 mg/kg biweekly dose (ESS [+LMgain])	Total Number Complete	Total ESS
No longitudinal data	0.0317 (32.2)	0.0317 (32.2)		
Using LM with no endpoint correlation	0.0310 (33.7 [+1.5])	0.0300 (35.9 [+3.7])		
Using LM with weak endpoint correlation	0.0295 (37.2 [+5])	0.0287 (39.4 [+7.2])		
Using LM with strong endpoint correlation	0.0271 (44.2 [+12])	0.0266 (45.8 [+13.6])		

ESS = Effective Sample Size

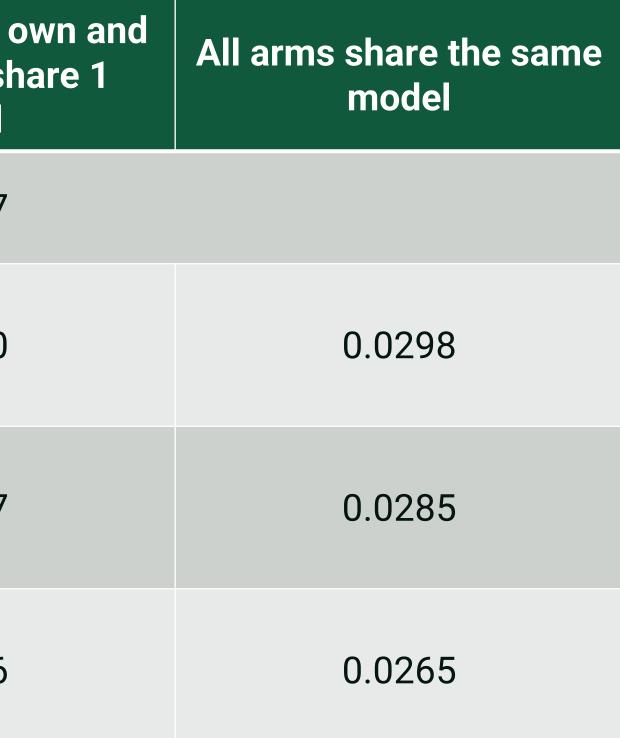
LMgain = Gain in ESS over the no longitudinal data model.

Model	SE of Estimate of Control (ESS [+LMgain])	SE of Estimate of 10 mg/kg biweekly dose (ESS [+LMgain])	Total Number Complete	Total ESS
No longitudinal data	0.0317 (32.2)	0.0317 (32.2)	194	194
Using LM with no endpoint correlation	0.0310 (33.7 [+1.5])	0.0300 (35.9 [+3.7])	194	213.3 (+19.3)
Using LM with weak endpoint correlation	0.0295 (37.2 [+5])	0.0287 (39.4 [+7.2])	194	234.2 (+40.2)
Using LM with strong endpoint correlation	0.0271 (44.2 [+12])	0.0266 (45.8 [+13.6])	194	273.2 (+79.2)

ESS = Effective Sample Size

LMgain = Gain in ESS over the no longitudinal data model.

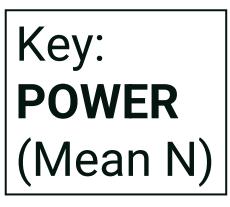
Model	SE of Estimate of Control (ESS [+LMgain])	SE of Estimate of 10 mg/kg biweekly dose (ESS [+LMgain])	Total Number Complete	Total ESS
No longitudina data	0.0317 (32.2)	0.0317 (32.2)	194	194
Using LM with no endpoint correlation	0.0310 (33.7 [+1.5])	0.0300 (35.9 [+3.7])	194	213.3 (+19.3)
Using LM with weak endpoin correlation	1111/95	0.0287 (39.4 [+7.2])	194	234.2 (+40.2)
Using LM with strong endpoint	0.0271 (44.2 [+12])	0.0266 (45.8 [+13.6])	194	273.2 (+79.2)
correlation I BERRY	Best possible gain (perfect longitudinal correlation) is an ESS o 311			


Gains from LM across different numbers of LM models

Average SE of estimated treatment response estimate

Simulation Method	Each Arm Has Own Model	Control has its o treatments sh model
No longitudinal data		0.0317
Using LM with no endpoint correlation	0.032	0.0300
Using LM with weak endpoint correlation	0.031	0.0287
Using LM with strong endpoint correlation	0.028	0.0266

ers of LM models se estimate


Okay, cool. But, do these changes result in improvements in operating characteristics?

Operating Characteristic Changes

Comparing operating characteristics of the trial with no longitudinal data vs. varying degrees of longitudinal correlation to go along with the "Model Control Separately" set of longitudinal models.

Scenario	No Longitudinal Data	Use Longitudinal Model, but data not correlated	Use Longitudinal Model, and data has weak correlation	Use Longitudinal Model, and data has strong correlation
Null	0.081	0.081	0.082	0.076
	711	647	673	692
All Doses are okay	0.28	0.29	0.28	0.28
	716	666	679	699
All doses are good	0.66	0.63	0.67	0.67
	649	614	609	607
All doses are great	0.93	0.92	0.91	0.94
	535	512	505	466
Doses linearly improve	0.60	0.59	0.62	0.61
	668	633	629	632
Low doses not good,	0.69	0.67	0.69	0.72
but gets good for high	649	624	622	607
Similar to Lecanemab	0.34	0.308	0.342	0.338
S2 results	710	661	675	693

Operating Characteristic Changes

Comparing operating characteristics of the trial with no longitudinal data vs. varying degrees of longitudinal correlation to go along with the "Model Control Separately" set of longitudinal models.

Scenario	No Longitudinal Data	Use Longitudinal Model, but data not correlated	Use Longitudinal Model, and data has weak correlation	Use Longitudinal Model, and data has strong correlation
Null	0.081	0.081	0.082	0.076
	711	647	673	692
All Doses are okay	· / ·	the Type I errors to match ndaries for the "No longitu	n 0.28 699	
All doses are good	0.6 64	conservat	0.67 607	
All doses are great	o.9 53	e I error was considerably trials with longitudir	he 0.94 466	
Doses linearly improve	0.60	0.59	0.62	0.61
	668	633	629	632
Low doses not good,	0.69	0.67	0.69	0.72
but gets good for high	649	624	622	607
Similar to Lecanemab	0.34	0.308	0.342	0.338
S2 results	710	661	675	693

Key: POWER (Mean N)

Summary

- There are many options for longitudinal models, aka multiple imputation models, in FACTS.
 - We sort of scratched the surface here, but there is much more to investigate (we never talked about predictive probabilities and how longitudinal models can improve those predictions, for example)
- When decisions are being made without complete information, including a multiple imputation model can improves efficiency.
- Efficiency gains largely depend on the amount of correlation between early and final endpoints in the data.
- Interim analysis models have smaller credible intervals around response estimates when using longitudinal imputation models. It's not a small improvement.

